Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.929
Filter
1.
PLoS One ; 19(5): e0303449, 2024.
Article in English | MEDLINE | ID: mdl-38768097

ABSTRACT

Candida albicans (C. albicans) can behave as a commensal yeast colonizing the vaginal mucosa, and in this condition is tolerated by the epithelium. When the epithelial tolerance breaks down, due to C. albicans overgrowth and hyphae formation, the generated inflammatory response and cell damage lead to vulvovaginal candidiasis (VVC) symptoms. Here, we focused on the induction of mitochondrial reactive oxygen species (mtROS) in vaginal epithelial cells after C. albicans infection and the involvement of fungal burden, morphogenesis and candidalysin (CL) production in such induction. Bioluminescent (BLI) C. albicans, C. albicans PCA-2 and C. albicans 529L strains were employed in an in vitro infection model including reconstituted vaginal epithelium cells (RVE), produced starting from A-431 cell line. The production of mtROS was kinetically measured by using MitoSOX™ Red probe. The potency of C. albicans to induced cell damage to RVE and C. albicans proliferation have also been evaluated. C. albicans induces a rapid mtROS release from vaginal epithelial cells, in parallel with an increase of the fungal load and hyphal formation. Under the same experimental conditions, the 529L C. albicans strain, known to be defective in CL production, induced a minor mtROS release showing the key role of CL in causing epithelial mithocondrial activation. C. albicans PCA-2, unable to form hyphae, induced comparable but slower mtROS production as compared to BLI C. albicans yeasts. By reducing mtROS through a ROS scavenger, an increased fungal burden was observed during RVE infection but not in fungal cultures grown on abiotic surface. Collectively, we conclude that CL, more than fungal load and hyphae formation, seems to play a key role in the rapid activation of mtROS by epithelial cells and in the induction of cell-damage and that mtROS are key elements in the vaginal epithelial cells response to C. albicans.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Epithelial Cells , Fungal Proteins , Mitochondria , Reactive Oxygen Species , Vagina , Candida albicans/metabolism , Candida albicans/physiology , Female , Humans , Mitochondria/metabolism , Vagina/microbiology , Reactive Oxygen Species/metabolism , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Fungal Proteins/metabolism , Candidiasis, Vulvovaginal/microbiology , Hyphae/metabolism , Hyphae/growth & development , Cell Line
2.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724834

ABSTRACT

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Phytic Acid , Chitosan/chemistry , Biofilms/drug effects , Nanoparticles/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Animals , Candida albicans/drug effects , Mice , Microbial Sensitivity Tests/methods , Phytic Acid/pharmacology , Phytic Acid/administration & dosage , Phytic Acid/chemistry , Female , Candidiasis/drug therapy , Particle Size , Drug Carriers/chemistry , Cross-Linking Reagents/chemistry , Cytokines/metabolism
3.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727840

ABSTRACT

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Cell Membrane , Isothiocyanates , Oxidative Stress , Reactive Oxygen Species , Candida albicans/drug effects , Candida albicans/physiology , Biofilms/drug effects , Antifungal Agents/pharmacology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Cell Cycle/drug effects , Hyphae/drug effects , Hyphae/growth & development , Ergosterol/metabolism
4.
J Clin Immunol ; 44(5): 121, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758287

ABSTRACT

Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).


Subject(s)
CARD Signaling Adaptor Proteins , Founder Effect , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/deficiency , Male , Female , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/diagnosis , Haplotypes , Mutation/genetics , Asia, Eastern , Alleles , Candida albicans/genetics , Adult , Pedigree , Asian People/genetics
5.
Nat Commun ; 15(1): 3926, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724513

ABSTRACT

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


Subject(s)
CD18 Antigens , Candidiasis , Fungal Proteins , Lectins, C-Type , Macrophages , Animals , Mice , beta-Glucans/metabolism , beta-Glucans/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , CD11b Antigen/metabolism , CD11b Antigen/immunology , CD18 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fungal Proteins/metabolism , Fungal Proteins/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Macrophages/immunology , Macrophages/metabolism , Signal Transduction
6.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734599

ABSTRACT

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Subject(s)
Clindamycin , Fluconazole , Gels , Liposomes , Nanoparticles , Particle Size , Periodontal Diseases , Clindamycin/administration & dosage , Clindamycin/therapeutic use , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/pharmacology , Periodontal Diseases/drug therapy , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Transmission , Temperature , Calorimetry, Differential Scanning , Candida albicans/drug effects , Viscosity , Lipids/chemistry , Humans
7.
J Med Life ; 17(1): 28-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737667

ABSTRACT

This study assessed the efficacy of antimicrobial photodynamic therapy (PDT) using a 650 nm diode laser combined with methylene blue (MB) as a photosensitizer to inhibit the growth of Candida albicans (C. albicans). Oral samples were collected from 75 patients diagnosed with oral thrush. C. albicans was isolated and identified using traditional methods and the VITEK 2 YST system. Samples (n = 25) were divided into five groups: Group 1 (control, n = 5) consisted of C. albicans suspensions in saline; Group 2 (n = 5) treated with nystatin; Group 3 (n = 5) exposed to a 650 nm diode laser in continuous mode at 200 mW for 300 seconds; Group 4 (n = 5) treated with 650 nm laser and MB as a photosensitizer; Group 5 (n = 5) exposed to the laser in combination with nystatin. Statistical analysis using ANOVA, Dunnett's t-test (P = 0.05), and LSD (P = 0.001) revealed significant differences in C. albicans counts pre- and post-treatment. Group 5 showed the most significant reduction in C. albicans, followed by Group 4, while Groups 2 and 3 showed the least variation. The findings suggest that PDT using a 650 nm diode laser with methylene blue (in continuous mode at 200 mW for 300 seconds) effectively reduced the prevalence of C. albicans.


Subject(s)
Candida albicans , Methylene Blue , Photochemotherapy , Photosensitizing Agents , Candida albicans/drug effects , Photochemotherapy/methods , Humans , Methylene Blue/pharmacology , Photosensitizing Agents/pharmacology , Lasers, Semiconductor/therapeutic use , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Nystatin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
8.
Front Cell Infect Microbiol ; 14: 1322847, 2024.
Article in English | MEDLINE | ID: mdl-38707513

ABSTRACT

The aetiology of chronic aseptic meningitis is difficult to establish. Candida meningitis in particular is often diagnosed late, as cerebrospinal fluid (CSF) work-up and imaging findings are nonspecific. A 35-year-old patient with chronic aseptic meningitis, for which repeated microbiological testing of CSF was unrevealing, was finally diagnosed with Candida albicans (C. albicans) meningitis with cauda equina involvement using metagenomic next-generation sequencing (mNGS). This report highlights the diagnostic challenges and the difficulties of treating shunt-associated fungal meningitis.


Subject(s)
Candida albicans , High-Throughput Nucleotide Sequencing , Meningitis, Fungal , Metagenomics , Humans , Adult , Candida albicans/genetics , Candida albicans/isolation & purification , Meningitis, Fungal/diagnosis , Meningitis, Fungal/microbiology , Meningitis, Fungal/drug therapy , Metagenomics/methods , Candidiasis/diagnosis , Candidiasis/microbiology , Candidiasis/cerebrospinal fluid , Male , Chronic Disease , Antifungal Agents/therapeutic use , Meningitis, Aseptic/diagnosis
9.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710898

ABSTRACT

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Subject(s)
Antifungal Agents , Aspergillus niger , Candida albicans , Drug Delivery Systems , Drug Liberation , Imidazoles , Nanofibers , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanofibers/chemistry , Candida albicans/drug effects , Aspergillus niger/drug effects , Drug Delivery Systems/methods , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Delayed-Action Preparations , Microbial Sensitivity Tests/methods , Drug Carriers/chemistry , Drug Stability
10.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719750

ABSTRACT

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Subject(s)
Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
11.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38691971

ABSTRACT

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Subject(s)
Antifungal Agents , Coordination Complexes , Microbial Sensitivity Tests , Silver , Voriconazole , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Voriconazole/pharmacology , Voriconazole/chemistry , Silver/chemistry , Silver/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Candida albicans/drug effects , Candida/drug effects , Crystallography, X-Ray
12.
Vet Med Sci ; 10(4): e1421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779883

ABSTRACT

A 14-year-old male tiger developed anorexia with elevated blood urea nitrogen and creatinine levels. The patient had a palpable abdominal mass and demonstrated neutrophilic leukocytosis and anaemia. Leukocytes, yeast and bacteria were present in the urine. The animal was non-responsive to therapy and was subsequently euthanised. Extensive acute renal papillary necrosis (RPN) with pyelonephritis, chronic nephritis and polycystic renal disease were evident during gross and microscopic pathology examinations. The histologic occurrence of fungal spores and pseudohyphae morphologically consistent with Candida species were observed within the necrotic papillary regions of the kidney and within multiple foci of mild parakeratotic hyperkeratosis present in the gingiva and tongue. Candida albicans along with a slight growth of Escherichia coli were recovered from kidney cultures. Possible contributory factors for the renal candidiasis and associated RPN include predisposing oral candidiasis, polycystic renal disease, ischaemic nephrosclerosis, age-associated or other forms of immunodeficiency and therapy with meloxicam, a non-steroidal anti-inflammatory drug. The absence of apparent lower urinary tract involvement coupled with the presence of intravascular renal 'Candida emboli' suggest that chronic oral candidiasis was the probable source of the kidney infection.


Subject(s)
Candidiasis , Tigers , Animals , Male , Candidiasis/veterinary , Candidiasis/drug therapy , Candidiasis/microbiology , Kidney Papillary Necrosis/veterinary , Kidney Papillary Necrosis/etiology , Candida albicans/isolation & purification , Animals, Zoo , Kidney Diseases/veterinary , Kidney Diseases/microbiology , Kidney Diseases/pathology , Kidney Diseases/etiology
13.
Microb Cell Fact ; 23(1): 148, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783243

ABSTRACT

BACKGROUND: The continuous progress in nanotechnology is rapid and extensive with overwhelming futuristic aspects. Through modernizing inventive synthesis protocols, a paradigm leapfrogging in novelties and findings are channeled toward fostering human health and sustaining the surrounding environment. Owing to the overpricing and jeopardy of physicochemical synthesizing approaches, the quest for ecologically adequate schemes is incontestable. By developing environmentally friendly strategies, mycosynthesis of nanocomposites has been alluring. RESULTS: Herein, a novel architecture of binary CuO and TiO2 in nanocomposites form was fabricated using bionanofactory Candida sp., for the first time. For accentuating the structural properties of CuTi nanocomposites (CuTiNCs), various characterization techniques were employed. UV-Vis spectroscopy detected SPR at 350 nm, and XRD ascertained the crystalline nature of a hybrid system. However, absorption peaks at 8, 4.5, and 0.5 keV confirmed the presence of Cu, Ti and oxygen, respectively, in an undefined assemblage of polygonal-spheres of 15-75 nm aggregated in the fungal matrix of biomolecules as revealed by EDX, SEM and TEM. However, FTIR, ζ-potential and TGA reflected long-term stability (- 27.7 mV) of self-functionalized CuTiNCs. Interestingly, a considerable and significant biocide performance was detected at 50 µg/mL of CuTiNCs against some human and plant pathogens, compared to monometallic counterparts. Further, CuTiNCs (200 µg/mL) ceased significantly the development of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans biofilms by 80.3 ± 1.4, 68.7 ± 3.0 and 55.7 ± 3.0%, respectively. Whereas, 64.63 ± 3.5 and 89.82 ± 4.3% antimicrofouling potentiality was recorded for 100 and 200 µg/ml of CuTiNCs, respectively; highlighting their destructive effect against marine microfoulers cells and decaying of their extracellular polymeric skeleton as visualized by SEM. Moreover, CuTiNCs (100 and 200 µg/ml) exerted significantly outstanding disinfection potency within 2 h by reducing the microbial load (i.e., total plate count, mold & yeast, total coliforms and faecal Streptococcus) in domestic and agricultural effluents reached >50%. CONCLUSION: The synergistic efficiency provided by CuNPs and TiNPs in mycofunctionalized CuTiNCs boosted its recruitment as antiphytopathogenic, antibiofilm, antimicrofouling and disinfectant agent in various realms.


Subject(s)
Biofilms , Copper , Nanocomposites , Titanium , Wastewater , Nanocomposites/chemistry , Biofilms/drug effects , Copper/chemistry , Copper/pharmacology , Titanium/chemistry , Titanium/pharmacology , Wastewater/microbiology , Wastewater/chemistry , Candida/drug effects , Disinfection/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biofouling/prevention & control , Candida albicans/drug effects , Microbial Sensitivity Tests
14.
PLoS Pathog ; 20(5): e1012225, 2024 May.
Article in English | MEDLINE | ID: mdl-38739655

ABSTRACT

Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.


Subject(s)
Biofilms , Candida albicans , Candidiasis , Fungal Proteins , Biofilms/growth & development , Candida albicans/metabolism , Candida albicans/genetics , Candida albicans/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Candidiasis/microbiology , Candidiasis/metabolism , Hyphae/metabolism , Mice , Gene Expression Regulation, Fungal , Ergosterol/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation
15.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787374

ABSTRACT

Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and ß-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.


Subject(s)
Candida albicans , Candidiasis , Animals , Candida albicans/immunology , Mice , Candidiasis/immunology , Candidiasis/prevention & control , Fungal Vaccines/immunology , Disease Models, Animal , Virulence , Female , Cytokines/metabolism , Biofilms/drug effects , Biofilms/growth & development
16.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732057

ABSTRACT

Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:ß-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.


Subject(s)
Biofilms , Osteoblasts , Platelet-Rich Plasma , Silver , Humans , Biofilms/drug effects , Silver/chemistry , Silver/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Staphylococcus epidermidis/drug effects
17.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732618

ABSTRACT

Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against Candida albicans ATCC10231. Six out of 41 cell-free supernatants demonstrated the most potent antibacterial and anticandidal activities. They also inhibited the clinical isolates of C. albicans, causing VVC and non-C. albicans. The synergistic effect between Lactobacillus crispatus 84/7 and Limosilactobacillus reuteri 89/4 was demonstrated by the lowest fractional inhibitory concentration index (FICI = 0.5). The synbiotic culture of bacterial combination, cultured with Jerusalem artichoke (H. tuberosus) extract, also exhibited the strongest inhibition against the tested C. albicans. Biofilm formation decreased after 12 h of incubation in the selected cell-free supernatants of this synbiotic culture. The anticandidal activity of crude extracts was lost after treatment with proteinase K and trypsin but not with heating conditions, suggesting that it may be a heat-stable substance. In conclusion, the combination of L. crispatus 84/7 and L. reuteri 89/4 with H. tuberosus may be a promising candidate for inhibiting Candida infection and biofilm formation, with the potential use as ingredients in vaginal biotherapeutic products.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Plant Extracts , Synbiotics , Candida albicans/drug effects , Plant Extracts/pharmacology , Female , Humans , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/drug therapy , Vaginal Discharge/microbiology , Biofilms/drug effects , Lactobacillus/drug effects , Limosilactobacillus reuteri , Lactobacillus crispatus , Antifungal Agents/pharmacology
18.
Life Sci ; 348: 122699, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718854

ABSTRACT

AIMS: Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS: Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS: It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE: This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.


Subject(s)
Antifungal Agents , Azoles , Benzoquinones , Candida albicans , HSP90 Heat-Shock Proteins , Lactams, Macrocyclic , Reactive Oxygen Species , Succinate Dehydrogenase , Benzoquinones/pharmacology , Lactams, Macrocyclic/pharmacology , Candida albicans/drug effects , Antifungal Agents/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Azoles/pharmacology , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Drug Resistance, Fungal/drug effects
19.
J Med Chem ; 67(10): 8420-8444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38718180

ABSTRACT

Faced with increasingly serious fungal infections and drug resistance issues, three different series of novel dual-target (programmed death ligand 1/14 α-demethylase) compounds were constructed through the fragment combination pathway in the study. Their chemical structures were synthesized, characterized, and evaluated. Among them, preferred compounds 10c-1, 17b-1, and 18b-2 could efficiently exert their antifungal and antidrug-resistant fungal ability through blocking ergosterol biosynthesis, inducing the upregulation of reactive oxygen species level, and triggering apoptosis. Especially, compound 18b-2 exhibited the synergistic function of fungal inhibition and immune activation. Moreover, the covalent organic framework carrier was also generated based on the acidic microenvironment of fungal infection to improve the bioavailability and targeting of preferred compounds; this finally accelerated the body's recovery rate.


Subject(s)
Antifungal Agents , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Humans , Animals , Microbial Sensitivity Tests , Structure-Activity Relationship , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Mycoses/drug therapy , Mice , Candida albicans/drug effects , Ergosterol/metabolism , Molecular Structure
20.
ACS Appl Mater Interfaces ; 16(20): 25637-25651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728098

ABSTRACT

Fluconazole (FNL) is one of the first-line treatments for fungal keratitis as it is an effective broad-spectrum antimicrobial commonly administered orally or topically. However, FNL has a very low water solubility, limiting its drug formulation, therapeutic application, and bioavailability through tissues. To overcome these limitations, this study aimed to develop FNL inclusion complexes (FNL-IC) with cyclodextrin (α-cyclodextrin, sulfobutylether-ß-cyclodextrin, and hydroxypropyl-γ cyclodextrin) and incorporate it into a dissolvable microneedle (DMN) system to improve solubility and drug penetration. FNL-IC was evaluated for saturation solubility, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release, minimum inhibitory concentration, minimum fungicidal concentration, and time-killing assay. DMN-FNL-IC was evaluated for mechanical and insertion properties, surface pH, moisture absorption ability, water vapor transmission, and drug content recovery. Moreover, ocular kinetic, ex vivo antimicrobial, in vivo antifungal, and chorioallantoic membrane (HET-CAM) assays were conducted to assess the overall performance of the formulation. Mechanical strength and insertion properties revealed that DMN-FNL-IC has great mechanical and insertion properties. The in vitro release of FNL-IC was significantly improved, exhibiting a 9-fold increase compared to pure FNL. The ex vivo antifungal activity showed significant inhibition of Candida albicans from 6.54 to 0.73 log cfu/mL or 100-0.94%. In vivo numbers of colonies of 0.87 ± 0.13 log cfu/mL (F2), 4.76 ± 0.26 log cfu/mL (FNL eye drops), 3.89 ± 0.24 log cfu/mL (FNL ointments), and 8.04 ± 0.58 log cfu/mL (control) showed the effectiveness of DMN preparations against other standard commercial preparations. The HET-CAM assay showed that DMN-FNL-IC (F2) did not show any vascular damage. Finally, a combination of FNL-IC and DMN was developed appropriately for ocular delivery of FNL, which was safe and increased the effectiveness of treatments for fungal keratitis.


Subject(s)
Antifungal Agents , Candida albicans , Fluconazole , Keratitis , Fluconazole/pharmacology , Fluconazole/chemistry , Fluconazole/pharmacokinetics , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Keratitis/drug therapy , Keratitis/microbiology , Candida albicans/drug effects , Microbial Sensitivity Tests , Rabbits , Needles , Solubility , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...